Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 680
Filtrar
1.
Angew Chem Int Ed Engl ; 63(11): e202317726, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258338

RESUMO

The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.


Assuntos
Ascomicetos , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas , Ascomicetos/metabolismo , Biologia Sintética , Perileno/farmacologia , Perileno/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069219

RESUMO

The aim of this study was to explore the potential of hypericin, a naturally occurring photosensi-tizer, for photodynamic therapy (PDT) in skin cancer, investigating its phototoxic effects and mechanisms of action in cancer cells compared to normal skin keratinocytes, squamous cell cancer (SCC-25) cells and melanoma (MUG-Mel2) cells. Hypericin was applied at concentrations ranging from 0.1-40 µM to HaCaT, SCC-25, and MUG-Mel2 cells. After 24 h of incubation, the cells were exposed to orange light at 3.6 J/cm2 or 7.2 J/cm2. Phototoxicity was assessed using MTT and SRB tests. Cellular uptake was measured by flow cytometry. Apoptosis-positive cells were estimated through TUNEL for apoptotic bodies' visualization. Hypericin exhibited a higher phototoxic reaction in cancer cells compared to normal keratinocytes after irradiation. Cancer cells demonstrated increased and selective uptake of hypericin. Apoptosis was observed in SCC-25 and MUG-Mel2 cells following PDT. Our findings suggest that hypericin-based PDT is a promising and less invasive approach for treating skin cancer. The higher phototoxic reaction, selective uptake by cancer cells, and observed proapoptotic properties support the promising role of hypericin-based PDT in skin cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Dermatite Fototóxica , Melanoma , Perileno , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Perileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dermatite Fototóxica/tratamento farmacológico , Queratinócitos , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
3.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003673

RESUMO

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.


Assuntos
Herpesvirus Humano 1 , Perileno , Fotoquimioterapia , Perileno/farmacologia , Oxigênio Singlete , Antivirais/farmacologia , Antivirais/química , Fármacos Fotossensibilizantes/farmacologia
4.
Photodiagnosis Photodyn Ther ; 44: 103858, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898262

RESUMO

Cyclodextrins (CDs) are molecules approved by the FDA and show promise in increasing the solubility of hydrophobic molecules and making them more available to the skin. These CDs have been used to form complexes with some photosensitizers for Photodynamic Therapy (PDT), such as Hypericin (HY). HY is a lipophilic photosensitizer known for its exceptional fluorescence and singlet oxygen quantum yield generation of over 20 % under 590 nm irradiation. In this study, we found a six-fold increase in the release of HY in vitro after complexation with ß-CD. The ß-CDHY assembly also demonstrated better skin retention, which is crucial for the topical application of this photosensitizer. Furthermore, the ß-CD complexation led to a significant increase in the phototoxicity of HY at three different light doses (3, 6, and 10 J cm-2) due to its improved water solubility and higher in vitro accumulation (approximately two times compared with free HY) in HeLa and Vero cell lines.


Assuntos
Perileno , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Perileno/farmacologia , Perileno/química , Células HeLa
5.
Phytother Res ; 37(12): 5639-5656, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37690821

RESUMO

Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.


Assuntos
Hypericum , Perileno , Perileno/farmacologia , Antracenos , Morte Celular , Fármacos Fotossensibilizantes/farmacologia
6.
Virus Res ; 334: 199158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37339718

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions. These compounds showed nanomolar or sub-micromolar dose-dependent anti-SARS-CoV-2 activity, and also suppressed the in vitro replication of feline coronavirus (FCoV), also termed feline infectious peritonitis virus (FIPV). Perylene compounds exhibited high affinity for liposomal and cellular membranes, and efficiently intercalated into the envelopes of SARS-CoV-2 virions, thereby blocking the viral-cell fusion machinery. Furthermore, the studied compounds were demonstrated to be potent photosensitizers, generating reactive oxygen species (ROS), and their anti-SARS-CoV-2 activities were considerably enhanced after irradiation with blue light. Our results indicated that photosensitization is the major mechanism underlying the anti-SARS-CoV-2 activity of perylene derivatives, with these compounds completely losing their antiviral potency under red light. Overall, perylene-based compounds are broad-spectrum antivirals against multiple enveloped viruses, with antiviral action based on light-induced photochemical damage (ROS-mediated, likely singlet oxygen-mediated), causing impairment of viral membrane rheology.


Assuntos
COVID-19 , Perileno , Animais , Gatos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Oxigênio Singlete , Perileno/farmacologia , Envelope Viral , Espécies Reativas de Oxigênio , Vírion
7.
ACS Appl Bio Mater ; 6(3): 1242-1251, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36848251

RESUMO

Here, we report the fabrication of an antioxidant photosensitizing hydrogel system based on chitosan (CS-Cy/PBI-DOPA) covalently cross-linked with perylene bisimide dopamine (PBI-DOPA) as a photosensitizer. The severe insolubility and low tumor selectivity limitations of perylene were overcome by conjugation with dopamine and then to the chitosan hydrogel. The mechanical and rheological study of CS-Cy/PBI-DOPA photodynamic antioxidant hydrogels illustrated interconnected microporous morphologies with high elasticity, swelling ability, and suitable shear-thinning behavior. Bio-friendly properties, such as biodegradability and biocompatibility, excellent singlet oxygen production abilities, and antioxidant properties were also delivered. The antioxidant effects of the hydrogels control the physiological levels of reactive oxygen species (ROS) generated by photochemical reactions in photodynamic therapy (PDT), which are responsible for oxidative damage to tumor cells while protecting normal cells and tissues from ROS damage, including blood and endothelial cells. In vitro, PDT tests of hydrogels were conducted on two human breast cancer cell lines, MDA-MB-231 and MCF-7. These hydrogels offered more than 90% cell viability in the dark and good photocytotoxicity performance with 53 and 43% cell death for MCF-7 and MDA-MB-231 cells, which confirmed their promising potential for cancer therapeutic applications.


Assuntos
Neoplasias da Mama , Quitosana , Perileno , Fotoquimioterapia , Humanos , Feminino , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Antioxidantes/farmacologia , Perileno/farmacologia , Dopamina , Neoplasias da Mama/tratamento farmacológico , Células Endoteliais , Espécies Reativas de Oxigênio , Di-Hidroxifenilalanina
8.
Angew Chem Int Ed Engl ; 62(11): e202214586, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597125

RESUMO

Reactive oxygen species (ROS) can act as cytotoxic radicals to directly kill tumor cells and concurrently trigger immunogenic cell death (ICD) to efficiently achieve tumor therapy. Thus motivated, we herein present one perylene monoamide-based ROS supergenerator (PMIC-NC) that not only induces hypoxia-enhanced Type-I ROS burst aided by proton transients but also triggers Type-I/II ROS production by electron or energy transfer under near-infrared (NIR) light irradiation and also elicits a strong ICD effect. More interesting, the mitochondria- and lung-specific distribution of PMIC-NC also boosts the tumor therapeutic efficiency. As a result, PMIC-NC was employed for NIR-triggered photodynamic therapy, hypoxia-enhanced chemotherapy and also displayed robust immunogenicity for systemic tumor eradication. This work thus contributes one proof-of-concept demonstration of perylene as an integrated therapeutic platform for efficient immunogenic photochemotherapy against hypoxic tumors.


Assuntos
Nanopartículas , Neoplasias , Perileno , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Perileno/farmacologia , Perileno/uso terapêutico , Raios Infravermelhos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanopartículas/uso terapêutico , Oxigênio/uso terapêutico
9.
Antiviral Res ; 209: 105508, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581049

RESUMO

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Assuntos
COVID-19 , Perileno , Humanos , Antivirais/farmacologia , Antivirais/química , Uracila/farmacologia , Perileno/farmacologia , SARS-CoV-2
10.
Int J Biol Macromol ; 226: 423-433, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36473526

RESUMO

Hypocrellins are fungal perylenequinones (PQs) from Shiraia fruiting bodies and potential photosensitizers for cancer photodynamic therapy. Shiraia fruiting bodies harbor diverse bacterial communities dominated by Pseudomonas. The present study was to characterize the exopolysaccharide (EPS) of P. fulva SB1 which acted as an elicitor to stimulate the PQ accumulation of the host Shiraia. A bacterial EPS named EPS-1 was purified from the culture broth of P. fulva SB1, which consisted of mannose (Man) and glucose (Glc) with an average molecular weight of 9.213 × 104 Da. EPS-1 had (1 â†’ 2)-linked α-mannopyranose (Manp) backbone and side chains of α-D-Manp-(1→ and α-D-Manp-(1 â†’ 6)-ß-D-Glcp-(1 â†’ 6)-α-D-Manp(1 â†’ group attached to the O-6 positions of (1 â†’ 2)-α-D-Manp. EPS-1 at 30 mg/L stimulated both intracellular and extracellular hypocrellin A (HA) by about 3-fold of the control group. The EPS-1 treatment up-regulated the expression of key genes for HA biosynthesis. The elicitation of HA biosynthesis by EPS-1 was strongly dependent on the induced reactive oxygen species (ROS) generation. The results may provide new insights on the role of bacterial EPS in bacterium-fungus interactions and effective elicitation strategy for hypocrellin production in mycelial cultures.


Assuntos
Ascomicetos , Perileno , Fotoquimioterapia , Humanos , Quinonas/farmacologia , Quinonas/metabolismo , Fenol/metabolismo , Perileno/farmacologia , Perileno/metabolismo , Ascomicetos/genética
11.
Adv Sci (Weinh) ; 10(3): e2204498, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373677

RESUMO

Perylene derivatives can be stimulated by the hypoxic tumor microenvironment to generate radical anion that is proposed to arouse electron exchange with oxidizing substance, and in turn, realize reactive oxygen species (ROS) burst. Here, three perylene therapeutic agents, PDI-NI, PDIB-NI, and PDIC-NI, are developed and it is found that the minimum lowest unoccupied molecular orbital (LUMO) energy level makes PDIC-NI most easily accept electrons from the oxidative respiratory chain to form lots of anions, and the resultant maximum ROS generation, establishing an unambiguous mechanism for the formation of perylene radical anions in the cell, presents solid evidence for LUMO energy level determining endogenous ROS burst. Stirringly, PDIC-NI-induced ROS generation arouses enhanced mitochondrial oxidative stress and concurrently activates immunogenic cell death (ICD), which not only efficiently kills lung tumor cells but also reprograms immunosuppressive tumor microenvironment, including the cytokine secretion, dendritic cell maturation, as well as cytotoxic T lymphocytes activation, to inhibit the growth of xenografted and metastasis tumor, presenting a proof-of-concept demonstration of perylene that acts as an integrated therapeutic agent to well realize hypoxia-activated chemotherapy with ICD-induced immunotherapy on lung cancer.


Assuntos
Neoplasias , Perileno , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transporte de Elétrons , Perileno/farmacologia , Perileno/uso terapêutico , Elétrons , Neoplasias/terapia , Hipóxia , Imunoterapia , Microambiente Tumoral
12.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499608

RESUMO

The life cycle of severe acute respiratory syndrome coronavirus 2 includes several steps that are supposedly mediated by liquid-liquid phase separation (LLPS) of the viral nucleocapsid protein (N) and genomic RNA. To facilitate the rational design of LLPS-targeting therapeutics, we modeled N-RNA biomolecular condensates in vitro and analyzed their sensitivity to several small-molecule antivirals. The model condensates were obtained and visualized under physiological conditions using an optimized RNA sequence enriched with N-binding motifs. The antivirals were selected based on their presumed ability to compete with RNA for specific N sites or interfere with non-specific pi-pi/cation-pi interactions. The set of antivirals included fleximers, 5'-norcarbocyclic nucleoside analogs, and perylene-harboring nucleoside analogs as well as non-nucleoside amphiphilic and hydrophobic perylene derivatives. Most of these antivirals enhanced the formation of N-RNA condensates. Hydrophobic perylene derivatives and 5'-norcarbocyclic derivatives caused up to 50-fold and 15-fold enhancement, respectively. Molecular modeling data argue that hydrophobic compounds do not hamper specific N-RNA interactions and may promote non-specific ones. These findings shed light on the determinants of potent small-molecule modulators of viral LLPS.


Assuntos
COVID-19 , Perileno , Humanos , SARS-CoV-2/fisiologia , Nucleosídeos/farmacologia , RNA , Perileno/farmacologia , Antivirais/farmacologia
13.
J Nat Prod ; 85(11): 2667-2674, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346918

RESUMO

Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 µM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 µM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.


Assuntos
Alternaria , Anti-Inflamatórios , Antivirais , Atriplex , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Perileno , Plantas Medicinais , Quinonas , Humanos , Alternaria/química , Alternaria/isolamento & purificação , Atriplex/microbiologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Estrutura Molecular , Perileno/química , Perileno/isolamento & purificação , Perileno/farmacologia , Plantas Medicinais/microbiologia , Quinonas/química , Quinonas/isolamento & purificação , Quinonas/farmacologia , Ácido Tenuazônico/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia
14.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296485

RESUMO

Perylene-based compounds, either naturally occurring or synthetic, have shown interesting biological activities. In this study, we report on the broad-spectrum antifungal properties of two lead amphiphilic perylene bisimides, compounds 4 and 5, which were synthesized from perylene-3,4,9,10-tetracarboxylic dianhydride by condensation with spermine and an ammonium salt formation. The antifungal activity was evaluated using a collection of fungal strains and clinical isolates from patients with onychomycosis or sporotrichosis. Both molecules displayed an interesting antifungal profile with MIC values in the range of 2-25 µM, being as active as several reference drugs, even more potent in some particular strains. The ammonium trifluoroacetate salt 5 showed the highest activity with a MIC value of 2.1 µM for all tested Candida spp., two Cryptococcus spp., two Fusarium spp., and one Neoscytalidium spp. strain. Therefore, these amphiphilic molecules with the perylene moiety and cationic ammonium side chains represent important structural features for the development of novel antifungals.


Assuntos
Compostos de Amônio , Perileno , Humanos , Antifúngicos/farmacologia , Perileno/farmacologia , Espermina , Ácido Trifluoracético , Testes de Sensibilidade Microbiana
15.
J Am Chem Soc ; 144(37): 17249-17260, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069676

RESUMO

In this study, the chromophore 3,4,9,10-perylenetetracarboxylic diimide (PDI) is anchored with phenyl substituents at the imide N site, followed by thionation, yielding a series of thione products 1S-PDI-D, 2S-cis-PDI-D, 2S-trans-PDI-D, 3S-PDI-D, and 4S-PDI-D, respectively, with n = 1, 2, 3, and 4 thione. The photophysical properties are dependent on the number of anchored thiones, where the observed prominent lower-lying absorption is assigned to the S0 → S2(ππ*) transition and is red-shifted upon increasing the number of thiones; the lowest-lying excited state is ascribed to a transition-forbidden S1(nπ*) configuration. All nS-PDIs are non-emissive in solution but reveal an excellent two-photon absorption cross-section of >800 GM. Supported by the femtosecond transient absorption study, the S1(nπ*) → T1(ππ*) intersystem crossing (ISC) rate is > 1012 s-1, resulting in ∼100% triplet population. The lowest-lying T1(ππ*) energy is calculated to be in the order of 1S-PDI-D > 2S-cis-PDI-D ∼ 2S-trans-PDI-D > 3S-PDI-D > 4S-PDI-D, where the T1 energy of 1S-PDI-D (1.10 eV) is higher than that (0.97 eV) of the 1O2 1Δg state. 1S-PDI-D is further modified by either conjugation with peptide FC131 on the two terminal sides, forming 1S-FC131, or linkage with peptide FC131 and cyanine5 dye on each terminal, yielding Cy5-1S-FC131. In vitro experiments show power of 1S-FC131 and Cy5-1S-FC131 in recognizing A549 cells out of other three lung normal cells and effective photodynamic therapy. In vivo, both molecular composites demonstrate outstanding antitumor ability in A549 xenografted tumor mice, where Cy5-1S-FC131 shows superiority of simultaneous fluorescence tracking and targeted photodynamic therapy.


Assuntos
Perileno , Fotoquimioterapia , Animais , Carbocianinas , Imidas/química , Camundongos , Perileno/química , Perileno/farmacologia , Tionas
16.
J Nat Prod ; 85(9): 2236-2250, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36098709

RESUMO

This Review provides a critical analysis of the literature covering the naturally occurring partially reduced perylenequinones (PQs) from fungi without carbon substituents (which can be named class A perylenequinones) and discusses their structures, stereochemistry, biosynthesis, and biological activities as appropriate. Perylenequinones are natural pigments with a perylene skeleton produced by certain fungi, aphids, some plants, and animal species. These compounds display several biological activities, e.g., antimicrobial, anti-HIV, photosensitizers, cytotoxic, and phytotoxic. It describes 36 fungal PQs and cites 81 references, covering from 1956 to August 2022.


Assuntos
Fungos , Perileno , Pigmentos Biológicos , Quinonas , Animais , Fungos/química , Perileno/análogos & derivados , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Quinonas/química , Quinonas/farmacologia
17.
Photodiagnosis Photodyn Ther ; 40: 103073, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35998882

RESUMO

Hypericin (HY) is a lipophilic photosensitizer (PS) extensively employed for photodynamic therapy (PDT), presenting high absorption in the visible region, chemical and photostability, as well as a good triplet quantum yield. Supramolecular complexation of photosensitizers into cyclodextrins (CD) is promising to improve their poor solubility, compromising their bioavailability and upcoming applications in PDT. This research produced an inclusion complex between HY and ß-CD through the co-solvent method. HY became soluble after inclusion into ß-CD cavities, besides retaining its fluorescent and singlet oxygen quantum yields (ϕf =0.115 and ϕΔ= 0.23, respectively), which are essential parameters for PDT uses and are not reported in the literature. By the theoretical analysis, since ΔG < 0, it was easy to conclude that HY inclusion into ß-CD is a spontaneous process. Additionally, the complexes presented no changes in excited states after complexation. ß-CDHY was 27% more phototoxic than free HY when tested in MCF7 cells using 3 J cm-2 of irradiation, indicating a better cell uptake of HY. These outcomes suggest that the inclusion complex of HY into ß-CD has the potential for use in PDT.


Assuntos
Perileno , Fotoquimioterapia , beta-Ciclodextrinas , Fotoquimioterapia/métodos , Perileno/farmacologia , Perileno/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Solubilidade , Modelos Teóricos
18.
ACS Appl Mater Interfaces ; 14(28): 31525-31540, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35790214

RESUMO

Antimicrobial strategies with high efficacy against bacterial infections are urgently needed. The development of effective therapies to control bacterial infections is still a challenge. Herein, near-infrared (NIR)-activated thermosensitive liposomes (TSL) were loaded with the NIR-dye 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR) and the water-soluble hypericin (Hyp) ß-cyclodextrin inclusion complex (Hyp-ßCD). DiR and Hyp-ßCD loaded thermosensitive liposomes (DHßCD-TSL) are functionalized for photothermal triggered release and synergistic photodynamic therapy to eliminate the gram-positive Staphylococcus saprophyticus. The dually active liposomes allow the production of heat and singlet oxygen species with the help of DiR and Hyp, respectively. The elevated temperature, generated by the NIR irradiation, irreversibly damages the bacterial membrane, increases the permeation, and melts the liposomes via a phase-transition mechanism, which allows the release of the Hyp-ßCD complex. The photodynamic effect of Hyp-ßCD eradicates the bacterial cells owing to its toxic oxygen species production. DHßCD-TSL measured the size of 130 nm with an adequate encapsulation efficiency of 81.3% of Hyp-ßCD. They exhibited a phase transition temperature of 42.3 °C, while they remained stable at 37 °C, and 44% of Hyp-ßCD was released after NIR irradiation (T > 47 °C). The bacterial viability dropped significantly after the synergistic treatment (>4 log10), indicating that the NIR-activated TSL have immense therapeutic potential to enhance the antibacterial efficacy. The liposomes showed good biocompatibility, which was confirmed by the cellular viability of mouse fibroblasts (L929).


Assuntos
Antracenos , Antibacterianos , Ciclodextrinas , Perileno , Fotoquimioterapia , Animais , Antracenos/farmacologia , Antibacterianos/farmacologia , Ciclodextrinas/farmacologia , Fibroblastos , Lipossomos , Camundongos , Perileno/análogos & derivados , Perileno/farmacologia
19.
Asian Pac J Cancer Prev ; 23(5): 1741-1751, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35633560

RESUMO

OBJECTIVE: Breast cancer (BC) currently has no effective treatment especially for the highly aggressive and metastatic triple negative breast cancer (TNBC). Here, we investigated the antitumoral and antimigratory effects of hypericin (HYP) encapsulated on Pluronic F127 (F127/HYP) photodynamic therapy (PDT) against TNBC cell line MDA-MB-231 compared to a nontumorigenic human breast ductal cell line (MCF-10A). METHODS: The phototoxicity/cytotoxicity was assessed by MTT assay, long-term cytotoxicity by clonogenic assay, cell uptake, subcellular distribution, and cellular oxidative stress by fluorescence microscopy, cell death with annexin V-FITC/propidium iodide, PDT mechanism using sodium azide and D-mannitol, and cell migration by wound-healing assay. RESULTS: The treatment promoted phototoxic effect on tumor cell line in a dose-dependent and selective manner. Internalization of F127/HYP was efficient and accumulation occurred in the endoplasmic reticulum and mitochondria, resulting in cellular oxidative stress mainly by the type II mechanism, induced by necrosis. Furthermore, F127/HYP decreased colony formation and reduced the cell migration ability in MDA-MB-231 cells. CONCLUSION: Our results suggest a potentially useful role of F127/HYP micelles as a platform for HYP delivery to more specifically and effectively treat TNBC.


Assuntos
Perileno , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Antracenos , Humanos , Perileno/análogos & derivados , Perileno/metabolismo , Perileno/farmacologia , Poloxâmero , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
20.
J Ethnopharmacol ; 284: 114767, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710555

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum perforatum L. is a traditional Chinese medicine used to sooth the liver, relieve depression, reduce body temperature, reduce sweating, and stimulate lactation. HP was extracted from Hypericum perforatum L. AIM OF STUDY: The antifatigue effects of hypericin were assessed in a series of experiments. MATERIALS AND METHODS: Six-to eight-week-old male ICR mice were raised in our lab. Mice were subjected to swimming training for 2 h, 6 days/week for 6 weeks. One hour prior to each swimming session, intraperitoneal injection of saline or HP (2 or 4 mg/kg) was performed. RESULTS: Compared with the fatigue model control group, HP was found to significantly increase the swimming time in forced swimming tests. The molecular mechanisms underlying the antifatigue effects were further revealed by analysing energy metabolism, the oxidant-antioxidant system and the inflammatory response. HP normalized changes in BLA, LDH, BUN, and CK, LG in the liver. In addition, multiple assays have confirmed that HP improved the MDA, T-AOC, GSH-PX and SOD activity, and the relevant signalling pathways involved in the antifatigue effects were clarified. Furthermore, HP improves the expression of pro- and anti-inflammatory cytokines in skeletal muscle. CONCLUSION: These results suggested that the anti-chronic fatigue effects of HP are likely achieved by normalizing energy metabolism and attenuating oxidative and inflammatory responses. Consequently, this study supports HP use in the clinic to alleviate chronic fatigue.


Assuntos
Antracenos/farmacologia , Fadiga/tratamento farmacológico , Hypericum/química , Perileno/análogos & derivados , Fitoterapia , Acetilcolina/metabolismo , Animais , Antracenos/química , Linhagem Celular , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mioblastos/efeitos dos fármacos , Estresse Oxidativo , Perileno/química , Perileno/farmacologia , Condicionamento Físico Animal , Distribuição Aleatória , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...